If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+7k-40=0
a = 3; b = 7; c = -40;
Δ = b2-4ac
Δ = 72-4·3·(-40)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*3}=\frac{-30}{6} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*3}=\frac{16}{6} =2+2/3 $
| Y=6x(3.34) | | Y=8x+3x+49 | | 1.5^x=1.3 | | 31.2=6w | | 3n-8(2n-15)=0 | | h-12/15=26 | | 51-2n=9 | | k+19=5 | | (-3r+54/5=-2r+3 | | -3x-8=-x+2. | | 4.2+z=11.2.6.7.8 | | 1-2i=0 | | 10-8x+2=5x+2(-4x+1) | | 2x-26=4x | | 3(2x+x+9)=27 | | C=4x+3200 | | 2x+4+4x+8=180 | | 31=9y+4 | | 7y+3-4y=27 | | 5x+100+30x=180 | | 5x-3=2x-55 | | 82+5x+4=180 | | x-14/x=-11/3 | | 6x-8=-6+6 | | 5z+1+59=90 | | 7x+4-x+2=72 | | 2(y+6)+5y=19 | | 12*x-5*5=37 | | 9k+6=4k+5=180 | | 12x-5=37 | | 8r-6=180 | | 7r+3+8r-6=180 |